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Abstract

The dynamics of non-linear oscillators comprising of a single-degree-of-freedom system and beams with
elastic two-sided amplitude constraints subject to harmonic loads is analyzed. The beams are clamped at
one end, and constrained against unilateral contact sites near the other end. The structures are modelled by
a Bernoulli-type beam supported by springs using the finite element method. Rayleigh damping is assumed.
Symmetric and elastic double-impact motions, both harmonic and sub-harmonic, are studied by way of a
Poincar!e mapping that relates the states at subsequent impacts. Stability and bifurcation analyses are
performed for these motions, and domains of instability are delineated. Impact work rate, which is the rate
of energy dissipation to the impacting surfaces, is evaluated and discussed. In addition, an experiment
conducted by Moon and Shaw on the vibration of a cantilevered beam with one-sided amplitude
constraining stop is modelled. Bifurcation observed in the experiment could be captured.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Oscillating mechanical systems confined within barriers exhibit highly non-linear behaviour due
to impacting. These oscillators are frequently encountered in many industrial equipment such as
steam generator tubes and fuel rods in nuclear power plants [1], impacting hammers [2], hopping
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robots [3] and gear transmissions [4], to name a few. Commonly, impacting is associated with
increase wear of the components of the oscillator, which is related to the dynamical behaviour of
the system. Hence, the study of vibro-impact dynamics is important for understanding and
analyzing the wear of components that are under such motions. The simplest model for vibro-
impacting system is a spring–mass system with amplitude constraint. A single-degree-of-freedom
oscillator (s.d.o.f.) with one-sided elastic constraint has been studied by Shaw and Holmes [5].
They found harmonic, sub-harmonic, and chaotic motions and analyzed the bifurcations leading
to them. Shaw [6] considered the dynamics of an s.d.o.f. with two-sided rigid constraints. The
vibro-impact dynamics of multi-d.o.f. systems has been the topic of several investigations.
Aidanp.a.a and Gupta [7] analyzed the one-sided impact motion of a two-d.o.f. impact vibrator.
They studied the influence of system parameters and compared the dynamic response behaviour
of a two-d.o.f. with that of an s.d.o.f. Pun et al. [8] investigated the dynamics of a multi-d.o.f.
impact vibrator subject to harmonic loading bound by rigid walls.

The impetus for the present study stems from applications in nuclear reactor components such
as fuel rods and steam generator tubes, which are subject to flow-induced vibrations. Steam
generator tubes are designed to have gaps at support points to allow for thermal expansion
and in nuclear fuel systems gaps may develop during service due to relaxation of support
springs and creep down of cladding tubes. In these systems, the rods vibrate in many modes and
are subjected to random, turbulent forces. The wear of these tubes is a major technical issue
in the industry [1,9]. In previous studies, the authors have analyzed the vibro-impact
dynamics of beams subject to harmonic loads [10] and random loads [11]. The results of
these analyses were compared with measurements of contact forces and displacements
made on a loosely supported rod in experiments. To characterize the system dynamics
an s.d.o.f. system with two-sided elastic constraints subject to both harmonic and random
loads [10,11] was evaluated. For the sake of comparison, a two-dimensional beam with two-
diametrically opposed identical supports was also modelled using the finite element
method. Both systems exhibit aperiodic as well as periodic solutions when subjected to
harmonic forces. But when the systems were subjected to random forces no periodic solutions
were found.

In this paper, the details of the dynamic stability of damped impact oscillators with elastic
constraints subject to harmonic loads are studied. A beam oscillator and its equivalent s.d.o.f.
systems are considered. The beam oscillator geometry and configuration are the same as that
studied in the authors’ earlier papers [10,11] where the results of computations were compared
with measurements. Furthermore, the energy dissipated under impacting is evaluated which is an
important measure of wear for such systems. An attempt was also made to numerically simulate,
using the given method, an experiment on the vibration of a cantilevered beam with non-linear
boundary condition made by Moon and Shaw [12].

The organization of this paper is as follows. A forced simple damped harmonic oscillator
(SDHO) with two-sided elastic constraints is considered in Section 2 where its dynamics is
described and the method utilized for stability analysis is delineated. Section 3 treats the
dynamics of vibrating beams comprising of a beam with fuel rod dimensions and the Moon
and Shaw cantilever beam used in their experiment. In Section 4, the common methods used
for the analysis of the beams and the s.d.o.f. system are detailed. The work rate and a
method of finding the periodic orbits and the bifurcation points of the system are also studied in
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Section 4. The results of the computations are presented in Section 5 for the considered
mechanical systems.

2. Simple damped harmonic oscillator

2.1. Oscillator

A s.d.o.f. system consisting of a SDHO with symmetric elastic constraints is considered here.
The oscillator consists of a point mass suspended horizontally by a linear spring and a linear
damper. An applied force brings the mass into contact with one of the two elastic contact sites,
which are linear springs as shown in Fig. 1.

The dynamics for this system is described by the following second order differential equation
[10,11]:

x;tt þ 2zx;t þ hðxÞ ¼ b cosðotÞ; ð1Þ

where hðxÞ ¼ x for jxjo1 and hðxÞ ¼ w2x � ðw2 � 1Þ sgnðxÞ for jxjX1: Further, w2 ¼ ðk1 þ k2Þ=k1;
x ¼ X=X0; t ¼ o0t; ð Þ;t ¼ @ð Þ=@t; o2

0 ¼ k1=m; 2z ¼ c=ðmo0Þ; o ¼ O=o0 and b ¼ A=ðmo2
0X0Þ:

Fig. 1 defines the remaining variables.
Hence, the dynamical system is characterized by the following variable quadruple ðo;b; z;w2Þ;

i.e., the forcing frequency, the forcing amplitude, the damping ratio and the stiffness ratio,
respectively. Moreover, the state of the system is determined by the vector ðx; v; tÞ: The analytic
solution of Eq. (1) is presented in Appendix A.

c

k1

k2 k2

m

A cosΩt 

X

X0X0

Fig. 1. A two-sided simple damped harmonic oscillator with elastic supports.
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2.2. Dynamics

Next, rewrite the second order equation (1) in the form of a system of first order equations:

x;t ¼ v;

v;t ¼ � 2zv � hðxÞ þ b cosðotÞ;

t;t ¼ 1: ð2Þ

Hence, the state of the system is determined by ðx; v; tÞ:
The three-dimensional vector field defined in Eq. (2) is periodic in t with period 2p=o: The

vector field dimension is reduced by defining a one-sided Poincar!e section at the place of structural
contact, i.e., at jxj ¼ 1; which gives two possibilities:

Sþ ¼ fðx; v; tÞjx ¼ þ1; v > 0g; S� ¼ fðx; v; tÞjx ¼ �1; vo0g: ð3Þ

Next a Poincar!e return map P is defined as a mapping of points in S into themselves:

P ¼ S-S or ðtN ; vNÞ ¼ Pðt0; v0Þ; ð4Þ

where S denotes either of the two sections defined in (3), which are selected depending on the sign
of the initial velocity v0; and N is an even integer number. It is assumed that the iteration (in
forward time) begins with a non-linear contact phase (i.e., when a contact spring is compressed)
and then followed by a linear free-flight phase.

2.3. Periodic orbits

Periodic motion of the SDHO is studied by using the Poincar!e map P: A motion that repeats
itself after k encounters with the Poincar!e section must fulfill the following condition:

%tþ
2pn

o
; %v

� �
¼ Pkð%t; %vÞ; ð5Þ

where Pk denotes the kth iterated map and n is the order of sub-harmonic. The point ð%t; %vÞ is called
periodic in P: Note that relation (5) holds for both symmetric (2k impact motion) and non-
symmetric periodic motion after impacts at x ¼ 71:

The stability of a periodic motion can be found by evaluating the eigenvalues of the Jacobian
matrix of the return map at ð%t; %vÞ: In Shaw’s fashion [6], the Jacobian is written in the form

J ¼
@ðtN; vNÞ

@ðtN�1; vN�1Þ

� �
y

@ðt2; v2Þ
@ðt1; v1Þ

� �
@ðt1; v1Þ
@ðt0; v0Þ

� �
; ð6Þ

where the chain rule was utilized. The components of the ð4	 4Þ matrices are listed in Appendix
B. Note that, due to the transcendental nature of the solution (Eq. (A.1), Appendix A), P is not
known in closed form and hence in order to evaluate it one has to resort to numerical methods.

2.4. Method of computation

The method of computation of trajectories and intersections with the Poincar!e sections is as
follows: Evaluate Eq. (A.1) in Appendix A for the time tiþ1 at the next structural discontinuity,
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i.e., solve

jxðtiþ1; ti; viÞj � 1 ¼ 0; tiþ1 > sgnðtÞti; ð7Þ

where ðti; viÞ denotes the initial state.
Given the triple ðtiþ1; ti; viÞ; the variables viþ1 ¼ x;t jt¼tiþ1

and aiþ1 ¼ v;t jt¼tiþ1
are explicitly

found through differentiations of Eq. (A.1) with respect to t:

viþ1 ¼ e�zðtiþ1�tiÞfð�zAi þ OiBiÞ cos½Oiðtiþ1 � tiÞ� � ðOiAi þ zBiÞ sin½Oiðtiþ1 � tiÞ�g

� gio sinðotiþ1Þ þ dio cosðotiþ1Þ; ð8Þ

aiþ1 ¼ e�zðtiþ1�tiÞfðz2Ai � 2zOiBi � O2
i AiÞ cos½Oiðtiþ1 � tiÞ�

þ ðz2Bi þ 2zOiAi � O2
i BiÞ sin½Oiðtiþ1 � tiÞ�g

� gio
2 cosðotiþ1Þ � dio2 sinðotiþ1Þ; ð9Þ

where Ai; Bi; Oi; gi and di are defined in relations (A.2) in Appendix A.
The root of Eq. (A.1) in Appendix A is calculated by first bracketing the root and then applying

a Newton–Raphson (NR) iteration scheme. The NR iteration scheme that is utilized is very robust
and fast, once the root is bracketed. However, bracketing the correct root is a non-trivial task,
since the duration of contact and free-flight phases can vary greatly. The scheme of the
computation is outlined in Box 1, where square brackets ½ � and � ½ denote closed and open
intervals, respectively.

The algorithm outlined in Box 1 has been found to be very robust and efficient, i.e., for the type
of problems considered here, it gives rapid convergence. However, it should be mentioned that the
algorithm fails for specific situations: (i) when no contacts occur and (ii) when the difference

Box 1

SDHO computational scheme.

(1) Initial interval guess ½t1; t2�; where t1 > sgnðtÞti and t2 ¼ ti þ sgnðtÞ2pn=o:
(2) Divide the interval into inndiv sub-intervals.

(3) Loop through the sub-intervals to find sign change of jxj � 1: If no sign change is found, set in :¼ in þ 1 and go to

step 2, else set ½tb1; tb2� to bracket the change of sign.

(4) Run NR iteration to find root trA½tb1; tb2�:
(5) Verify the root tr in

� contact phase

xðt; ti; viÞ sgnðtÞ sgnðviÞX1 for tA�ti; tr½;

� free-flight phase

jxðt; ti; viÞjo1 for tA�ti; tr½:

If the root is not valid, set in :¼ in þ 1 and if ðin > 8Þ set t1 :¼ ðti þ t1Þ=2 go to step 2.

(6) Set tiþ1 ¼ tr and t1 ¼ tb2 and proceed with next phase.
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between the duration of contact and free-flight phase is very large. In both situations, the
algorithm fails due to the inability to bracket a root.

3. Vibrating beams

3.1. Beam oscillators

Three different types of impact oscillators involving beams are studied in this paper: (i) a beam
representation of an SDHO, Section 3.1.1, (ii) an experiment by Moon and Shaw [12], Section
3.1.2 and (iii) vibration of a nuclear fuel rod [10,13,14], Section 3.1.3. The main purpose of the first
two oscillators is to gain understanding for details of the dynamics of the system and also to
validate the numerical methods utilized. The third oscillator illustrates an application of the
methods to an engineering structure.

The structures are considered to be Bernoulli beams with Rayleigh damping [15]. The beam is
discretized in space with finite elements with cubic interpolation functions and in time using
Newmark’s integration method [16]. The program uses a node-to-node contact algorithm; hence,
each contact sites is connected to a specific node. Each contact site can be given individual force–
displacement relationship in normal, tangential, and axial directions. Stick–slip motion along the
curved surface of the beam is allowed. The contact force vector p is resolved into p ¼ ðpn; pc; paÞ;
where indices n; c and a denote normal, circumferential and axial directions, respectively.
Correspondingly, the gap vector is decomposed as g ¼ ðgn; gc; 0Þ: Classical contact laws (Signorini
plus Coulomb) are assumed, see e.g., Refs. [10,17]. Since the present work deals with planar beams
only, the circumferential components are set equal to zero. Furthermore, because the deflections
are small, set pa ¼ 0: Hence, friction force does not enter the calculations here. The model has
been used to analyze beam vibrations in our earlier works [10,11,13,14] with and without friction.

3.1.1. Beam representation of the SDHO
The SDHO described in Section 2 is revisited. However, this time the point mass is considered

as a cylindrical beam of unit length and radius with a high bending stiffness. Damping is
introduced through a potential damper according to Fig. 1.

The beam is modelled with two finite elements of length 0.5, whose rotational d.o.f. have been
locked. Hence one has a system consisting of three d.o.f. This system is excited with a harmonic
force at a point halfway along the beam, where the contact sites are also placed.

The purpose of this fictitious beam is to facilitate the verification of the numerical methods, to
be described later in this section, used to compute fixed points and local bifurcations of vibrating
beams through direct comparison with the SDHO.

3.1.2. Moon and Shaw experiment
Consider an experiment conducted by Moon and Shaw [12], where a cantilever beam was

excited by prescribing the displacement at the fixed end. The motion of the free end was
constrained by an aluminium stop, limiting the amplitude of the free end in one direction as
shown on the left-hand side of Fig. 2.
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Since our code is currently not equipped to handle prescribed displacement boundary
conditions, the displacement load is translated to a distributed load along the beam as indicated
on the right side of Fig. 2.

The reason for considering this beam oscillator here is not only to show that the method can be
used to evaluate such an experiment, but also to verify that the applied numerical method is
capable of producing features observed in the real world. However, in order to evaluate the
experiment accurately it is necessary to pay more attention to details of damping and the
boundary conditions. This will be discussed more in the computation and conclusion sections of
this paper (Sections 5 and 6).

3.1.3. Fuel rod oscillator

Consider a long slender beam supported at one end by a pair of stiff springs, namely a torsion
spring with stiffness krot suppressing rotation and a lateral spring with stiffness ktra suppressing
translation. Also, the beam is constrained by symmetric contact sites situated near the other end,
see Fig. 3. The beam is modelled with finite elements (FE) and the contact sites with linear elastic
springs. The beam is excited with a harmonic force applied in the same plane as the contact sites.
The case considered here was the object of an experiment, performed on a portion of nuclear fuel
rod, which was analyzed in the authors’ previous papers [10,11].

3.2. Dynamics

The dynamics of the FE system of the type described in the previous section (Section 3.1), in
non-dimensional form, can be written as a system of first order differential equations:

x;t¼ v;

v;t ¼M�1½fa þ fc � Cv� Kx�;

t;t¼ 1; ð10Þ

where M; C and K are the consistent mass, damping and stiffness matrices, respectively, x and v
are the displacement and velocity vectors, respectively, fa is the applied force and fc is the contact

=>

z

x

cos tΩA0

0.003

0.188

[m]

0.01175

cos tΩA0  Ω2m

k Al

Fig. 2. Moon and Shaw experiment [12].
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force. Consequently, the state vector for the system is defined by ðx; v; tÞ: The vector field defined
in (10) has dimension ð2nd:o:f : þ 1Þ; where nd:o:f : is the number of d.o.f. of the system. For a
harmonic load with forcing frequency O; the field is periodic in t with period 2p=o; where
o ¼ O=o0 is the non-dimensional forcing frequency and o0 is the fundamental eigenfrequency of
the system. Further, X ¼ xX0 and t ¼ o0t; where X denotes the dimensional displacement vector,
X0 is the initial gap and t is the time.

Like the SDHO case, a one-sided Poincar!e section is defined. Since a node-to-node contact
algorithm is being used, the node xc; where structural contact will occur, is identified and the
section defined by

S ¼ fðx; v; tÞ j xc ¼ þ1; vc > 0g ð11Þ

and the corresponding return map P by

P ¼ S-S or ð#t; #xr; #vÞ ¼ Pðt; xr; vÞ; ð12Þ

where xr is the reduced displacement vector, i.e., we exclude the contact node xc ¼ þ1; and use the
hat symbol # to denote the quantities at the subsequent structural contact.

A tcosΩ

0X 0X

k c k c

Fig. 3. A two-sided beam impact oscillator.
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3.3. Periodic orbits

For a beam oscillator, a fixed point of the return map P in (12), i.e., harmonic motion of the
system in Eq. (10), satisfies the following condition:

%tþ
2pn

o
; %xr; %v

� �
¼ Pkð%t; %xr; %vÞ; ð13Þ

where n denotes the sub-harmonic of the k iterated map.
The local stability of the periodic point is given by the eigenvalues of the Jacobian matrix

evaluated at the periodic point. The Jacobian is calculated with a forward difference
approximation and the eigenvalues thereof are computed using a Hessenberg reduction of the
Jacobian and then applying a QR algorithm [18]. The QR algorithm is an iterative procedure
which converges to a form where the eigenvalues are isolated on the diagonal or are eigenvalues of
a ð2	 2Þ sub-matrix. It is called QR because in each iteration the QR decomposition of a matrix
Ai ¼ QR is computed, where QQT ¼ 1 and R is an upper triangular matrix.

3.4. Method of computation

The procedure for computing one or more iterates of the Poincar!e return map, given by
Eq. (12), is to start from the initial state ð%t; %xr; %vÞ with xc ¼ þ1; then step forward in time until
#xcð#tÞ ¼ þ1 for #t > %t; where #t denotes the time at the subsequent impact at the same contact site.
The efficiency of following vibro-impact dynamics in the time domain using an FE code is well

documented, where the pseudo-force formulation with an implicit Newmark integration scheme
enables the use of a relatively large time step [16]. However, the incremental formulation can only
approximate #t in the closed interval ½ti; ti þ Dt� (subscript i is used to number the increments).

One should remark that an error in the computation of the final state ð#t; #xr; #vÞ will propagate
into the evaluation of the Jacobian. Therefore, it is necessary to select a sufficiently small time step
to obtain the desired accuracy of the Jacobian. However, it is not feasible to use the ‘‘small’’ time
step for the entire time integration. Therefore either an adaptive technique or an interpolation
scheme was used in the analysis. The simple adaptive ‘‘micro-shooting’’ algorithm, outlined in
Box 2, has been found to be very robust and reliable; robust in the sense that it will not diverge
and is reliable, meaning that it estimates the impact time with sufficient accuracy for the problem
under consideration.

The major drawback of the algorithm, outlined in Box 2, is its efficiency. Compared to an
interpolation scheme this algorithm needs far more operations and it is necessary to make sure
that the time increment used to improve the impact time estimate stays above the machine
accuracy. Here, this is implemented using the FORTRAN90 ‘‘EPSILON’’ function, e.g., Ref. [19].
The drawbacks are, however, considered to be minor, due to the simplicity and reliability of the
algorithm. Furthermore, the extra operations used are small compared to the total number of
steps needed in the time integration and the Newton iteration. One should mention that a scheme
using linear interpolation was implemented and later discarded, since it failed to produce the
necessary accuracy for the calculation of the Jacobian, which leads to slow convergence, if any,
and frequently gave incorrect eigenvalues.
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4. Common methods

The same formalism has intentionally been used for the oscillators described in Sections 2 and
3. This enables one to make use of the same methods to perform separate desirable computations.
These methods are outlined below.

4.1. Impact work-rate

Impact wear damage is quantified with the impact work-rate [20] parameter, which essentially is
a measure of available power to produce damage at the supports. Following Ref. [10], the
incremental normal work-rate is defined to be dUn ¼ p ds; where p and s denote contact force
acting on the support and its displacement, respectively. Returning to the global variables, defined
in Sections 2 and 3, write

dUn ¼ k2ðjX j � X0Þ dðjX j � X0Þ

¼ k2ðjX j � X0Þj ’Xj dt; ð14Þ

which is rewritten in non-dimensional form as

du ¼ ½jxj � 1�jvj dt; ð15Þ

Box 2

Micro-shooting algorithm.

(1) Proceed time stepping until an impact is detected. Impacts are identified by pi
n ¼ 0 and piþ1

n > 0; where i denotes

the increments.

(2) If the number of impacts equals the number of map iterations k and xiþ1
c � 1 > tol > 0; where predefined tol is a

tolerance, proceed to step 3, otherwise report the state and end.

(3) Increase m with one, where m is the number of iterations needed to find the impact time.

(4) If this is the first time ðm ¼ 1Þ; set

Dt0 ¼Dt;

*t ¼ tiþ1 � Dt=2

and go to step 6. *t is an estimate of the impact time.

(5) Update the impact time estimate according to:

If tiþ1 > *t

*t ¼ *tþ Dt0=2m

otherwise

*t ¼ *t� Dt0=2m

(6) Re-instate the state for i � 1; set Dt ¼ ð*t� ti�1Þ=2 and reduce the impact number (counter) by 1, then re-enter the

time stepping at 1.
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where du ¼ dUn=ðk2X 2
0 Þ: Note that impacts occurring at x ¼ 71 are accounted for by taking the

absolute value of x: The time-averaged work-rate is consequently

/ ’US ¼
1

tN � t0

Z tN

t0
½jxj � 1�jvj dt: ð16Þ

Note that the change of sign in v is accounted for in the integrand.

4.2. Fixed point searches

Fixed points of the maps defined by Eqs. (4) and (12) are sought using a globally convergent
Newton iteration method for finding the roots of the system of equations

Pkð%t; %dÞ �
%tþ

2pn

o
%d

0
@

1
A ¼ 0; ð17Þ

where d stands for a vector consisting of displacements and velocities and the bar symbol ð
%
Þ

indicates the fixed point. The term global refers to a method which converges to a solution for
almost any starting point. The particular algorithm used here has been adapted from Ref. [18].

4.3. Continuation of fixed points and bifurcation points

A sequential continuation scheme is used to map out branches of fixed point solutions, e.g.,
Refs. [21,22]. Following this scheme, let a be the control parameter (also called the continuation
parameter) and divide the interval of interest into closely spaced grid points a0; a1;y; aN : The
solution ð%tj; %djÞ at aj is used as a prediction for the next solution ð%tjþ1; %djþ1Þ at ajþ1: Note that
subscript j is used to index the grid points. The predicted value is then corrected with the Newton
scheme presented in Section 4.2. For the calculations presented in this paper, the forcing
frequency is used as the control parameter ða ¼ oÞ: Note that, this does not put any restriction on
the methods described, i.e., any property of the problem can be used as control parameter, force
amplitude, damping ratio, flexural rigidity, etc.

The sequential continuation scheme will obviously fail at bifurcation points where two or more
branches meet, e.g., at symmetry breaking bifurcations. In practice, however, one can choose
sufficiently small increments in the control parameter to prevent the fixed point from jumping
from one branch to another [23].

Cyclic fold bifurcations present another problem for the sequential continuation scheme
because the solution vanishes when the control parameter passes through its critical value. This
problem can be avoided by interchanging the control parameter a with one of the state variables
in %d [21].

5. Results of computations

In this section is presented some results of the computations for the SDHO and the beam
oscillators. In all the computations, except for the Moon and Shaw experiment, the structural
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data given in Table 1 has been chosen, which are representative for a pressurized water reactor
fuel rod with a presupposed gap.

5.1. Simple damped harmonic oscillator

The results of the computations for the SDHO are presented in the form of bifurcation
diagrams (Figs. 4–6) and phase portraits.

One starts by searching for fixed points for the first iterated map according to relations (4). The
bifurcation diagrams, Figs. 4–6, display the response of the system in terms of the impact velocity
v versus forcing frequency o for w2 ¼ 132:7415; z ¼ 0:005 and b ¼ 51:0997 for the first, second
and third sub-harmonics, respectively. The diagrams are obtained by using the method described
in Sections 2, 4.2 and 4.3. Note that these figures are cut-outs from the full bifurcation diagrams in
order to highlight specific features.

Now, consider the first sub-harmonic of motion with the bifurcation diagram shown in Fig. 4
and phase portraits in Fig. 7. From Fig. 7a one can see that for o > 4:625; there is a stable periodic

Table 1

Structural properties

Mass per unit length m 0:663 kg=m
Span length L 0:64 m

Oscillator stiffness k1 939:34 N=m
Damping coefficient c 0:099667 kg=s
Spring stiffness k2 123750 N=m
Amplitude A 6 N

Gap X0 1:25	 10�4 m

3 3.5 4 4.5 5

ω [−]

5

10

15

20

v 
[-

]

  Fo

  Sy

  Fl

  Fl

  Fl

  Fl

  Fl
  Fl

Fig. 4. Period one solutions for the SDHO for the first sub-harmonic (w2 ¼ 132:7415; z ¼ 0:0050 and b ¼ 51:0997),
solid and broken lines denote stable and unstable solutions, respectively. Bifurcation points are denoted as Fl ¼ flip;
Fo ¼ cyclic fold and Sy ¼ symmetry breaking.
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symmetric attractor, since ð%tþ pn=o;�%vÞjx¼�1 ¼ ð%t; %vÞjx¼þ1: This branch of stable periodic
solutions will remain stable until the bifurcation point oE11:5 (not shown in figure) at which
it coalesces and gets destroyed by a branch of unstable periodic symmetric solutions. This type of
bifurcation is called a cyclic-fold or saddle point bifurcation and it is characterised by a Floquet
multiplier leaving the unit circle at þ1 (Appendix C). Increasing o beyond this point causes the
motion to jump to a remote attractor. The position of the bifurcation point corresponds to
resonant peak of the zero-gap linear system ðo1E11:52Þ: Furthermore, the low level of damping in
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Fig. 5. Period one solutions for the SDHO for the second sub-harmonic (w2 ¼ 132:7415; z ¼ 0:0050 and b ¼ 51:0997),
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the system leads to very high velocities close to the bifurcation point %vA½3000; 5000�; which causes
a numerical problem for the present method, since the time spent during the contact phase gets
much longer than the time spent during free flight and consequently the algorithm fails to bracket
the subsequent root, cf., Section 2.4.

At o ¼ ½4:621; 4:622� the motion undergoes a supercritical symmetry breaking bifurcation,
giving birth to two branches of stable antisymmetric periodic solutions (cf., Figs. 7b and c). This is
associated with a Floquet multiplier leaving the unit circle at þ1 (Appendix C). These two
branches are eventually destroyed in period doubling bifurcations at oA½4:270; 4:275�; where they
continue as unstable branches of periodic solutions. This type of bifurcation is related to a
Floquet multiplier leaving the unit circle at �1:
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Fig. 7. Phase portraits for the first sub-harmonic of the stable period one solutions for the SDHO. (a) Case 1:

o ¼ 5:000; %tE� 0:176 and %vE8:745; (b) case 2: o ¼ 4:375; %tE� 0:258 and %vE10:63; (c) case 3: o ¼ 4:375; %tE� 0:0847
and %vE8:469; (d) case 4: o ¼ 3:125; %tE� 0:174 and %vE10:88; (e) case 5: o ¼ 3:125; %tE� 0:427 and %vE2:764 and

(f) case 6: o ¼ 4:000; %tE� 0:164 and %vE12:57:
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For lower oo4:11; one finds stable and unstable asymmetric periodic solutions, e.g., Fig. 7d.
Note that each asymmetric solution has a antisymmetric counterpart due to the geometric
symmetry of the system, e.g., for the solution shown in Fig. 7d ðo ¼ 3:125; %v ¼ 10:877Þ; there
exists an antisymmetric stable solution for o ¼ 3:125; %v ¼ 2:7639; Fig. 7e.

In the interval oA½3:975; 4:105� periodic solutions appear, e.g., Fig. 7f, whose antisymmetric
counterpart is no longer a fixed point to the first iterated map. Instead, it appears as a fixed point
to the second iterated map for the first sub-harmonic. Table 2 is a compilation of data for the
foregoing cases, shown in Fig. 7, concerning stable solutions for the first sub-harmonic of the one
iterated map.

Due to the geometric symmetry of the system, symmetric periodic solutions cannot exist for the
second sub-harmonic. However, both stable and unstable antisymmetric solutions do exist. Also,
due to geometric symmetry, the antisymmetric solution must come in pairs, hence resulting in the
double solution branches shown in Fig. 5.

The results for the third sub-harmonic show similar features as for the first sub-harmonic.
However, the fixed points for the third sub-harmonic are shifted to higher frequencies and span a
narrower range of velocity. This complies with the analytical results of Shaw [6] for an SDHO
with rigid amplitude constraints. In Fig. 6, one observes a branch of stable symmetric solutions
undergoing a supercritical symmetry breaking bifurcation at oE15:275; giving birth to two
branches of stable antisymmetric fixed solutions, which are then destroyed in flip bifurcations as
the forcing frequency is lowered.

Table 2

SDHO test cases

Test case 1 2 3 4

o 5.000 4.375 4.375 3.125
%t �0.17555 �0.25785 �8:2160	 10�2 �0.17446

%v 8.7454 10.629 8.4687 10.877

Total average work-rate 2.0510 1.9780 1.9780 1.0830

Righta average work-rate 1.0255 0.9884 0.9896 0.9176

Leftb average work-rate 1.0255 0.9896 0.9884 0.1654

Max displacement amplitude 2.1354 2.1922 2.1922 2.3584

Max velocity amplitude 9.2400 10.809 10.809 11.521

Test case 5 6

o 3.125 4.000
%t �0.42697 �0.16374

%v 2.7639 12.566

Total average work-rate 1.0830 2.0475

Righta average work-rate 0.1654 1.4005

Leftb average work-rate 0.9176 0.6470

Max displacement amplitude 2.3584 2.4834

Max velocity amplitude 11.521 13.055

aRight contact spring at x ¼ þ1:
bLeft contact spring at x ¼ �1:
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5.1.1. Impact work-rate of the SDHO

The impact work-rate has been calculated for the considered SDHO. The results for work rate
versus frequency along the stable branches, shown in Fig. 4, are depicted in Fig. 8. The
dependence of work-rate on the impact velocity is clearly visible.

For the stable branch of symmetric points oA½4:622; 11:000�; one can that the work-rate
increases rapidly as the forcing frequency approaches the resonance frequency. The work-rate of
the two stable branches ðoA½4:275; 4:621�Þ created in the symmetry breaking bifurcation does not
branch at the bifurcation point. This is exemplified with cases 2 and 3 listed in Table 2. Instead,
the bifurcation manifests itself as a discontinuity.

At the asymmetric periodic solutions, oA½3:026; 3:364�; oA½3:874; 4:100�; there are significant
differences in work-rate between the right and left contact sites (at x ¼ þ1 and �1; respectively),
e.g., cases 4–6 in Table 2 and Figs. 7d–f. Hence, a symmetric impact oscillator described by Eq. (1)
may give asymmetric wear damage depending on its initial conditions.

5.2. Beam oscillators

Here, the computations concerning the beam oscillators presented in Section 3 are given.
Sections 5.2.1 and 5.2.2 serve as validation of the numerical method described in Section 3.
Section 5.2.3 deals with the beam oscillator, representing a vibrating fuel rod, presented in Section
3.1.3.

5.2.1. Beam representation of SDHO
In this section, the methods for finding periodic solutions and computing work-rate in an FE

framework, described in Section 3, are validated with a beam representation of the SDHO. The
point mass in Fig. 1 is replaced with a beam of unit length and unit radius and high flexural
rigidity ðD ¼ 105 N m2). The beam is modelled by two elements, whose rotational d.o.f.s have
been locked. All other properties are set according to the data listed in Table 1.
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Fig. 8. Impact work-rate along stable branches of the bifurcation diagram for the SDHO as depicted in Fig. 4.
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The six test cases listed in Table 2 are re-calculated using the two-element beam oscillator, and
comparable results are displayed in Table 3 and Fig. 9. Note that all values given in Table 3 have
been rounded off to five significant figures.

The data presented in Tables 2 and 3, and in Figs. 7 and 9 agree well. Typically, the values differ
in the third or fourth significant figure. This deviation is due to the fact that the beam is not
infinitely stiff.

5.2.2. Moon and Shaw experiment [12]
In this section, the computational results for an experiment conducted by Moon and Shaw [12]

are given. The results are presented as phase portraits and bifurcation diagrams, in terms of
velocity v versus forcing amplitude a0 ¼ A0=D; where a0 and A0 are the non-dimensional and
dimensional forcing amplitudes, respectively, and D is the one-sided gap in the experiment. The
computations have been limited to a forcing frequency of O ¼ 10:5 Hz:

The experimental set-up is depicted in Fig. 2. The beam is modelled as a cantilever beam and is
excited by a distributed load. In order to simulate the experiment, one is forced to make some
assumptions regarding the structural properties. The flexural rigidity D ¼ EI (where E is Young’s
modulus and I is the moment of inertia of the cross-section of the beam with respect to the neutral
axis) was adjusted by matching the three lowest natural frequencies to those reported (4.3, 26 and
73 Hz). Proportional damping is utilized. The structural properties used in the calculations are

Table 3

Test cases with beam representation of SDHO

Test case 1 2 3 4

o 5.000 4.375 4.375 3.125
%t �0.17547 �0.25746 �8:2462	 10�2 �0.17779

%vc 8.7692 10.627 8.4897 10.942

Total average work-rate 2.0497 1.9727 1.9727 1.0934

Righta average work-rate 1.0249 0.98514 0.98753 0.91802

Leftb average work-rate 1.0249 0.98753 0.98514 0.17542

Max displacement amplitude 2.1349 2.1909 2.1909 2.3586

Max velocity amplitude 9.2506 10.795 10.795 11.558

Test case 5 6

o 3.125 4.000
%t �0.41419 �0.16287

%vc 2.7681 12.605

Total average work-rate 1.0934 2.0501

Righta average work-rate 0.17541 1.4016

Leftb average work-rate 0.91803 0.64850

Max displacement amplitude 2.3586 2.4838

Max velocity amplitude 11.558 13.065

The displayed data are taken from the node at the contact sites.
aRight contact spring at x ¼ þ1:
bLeft contact spring at x ¼ �1:
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compiled in Table 4. The aluminium stop is simulated by a spring with a stiffness based on
Young’s modulus of aluminium.
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Fig. 9. Phase portraits for the first sub-harmonic of the stable period one solutions for the beam representation of the

SDHO, cf., with Fig. 7. The displayed data are taken from the node at the contact sites. (a) Case 1, (b) case 2, (c) case 3,

(d) case 4, (e) case 5 and (f) case 6.

Table 4

Structural properties for the Moon and Shaw experiment

Thickness T m 0:23	 10�3

Width B m 9:5	 10�3

Length L m 0.188

Density r kg=m3 7850

Flexural rigidity D Nm2 0.00126533

Mass-proportional damping cm s�1 0.5752

Stiffness-proportional damping ck s 5:024	 10�4

Impact spring stiffness kAl N=m 6:65	 108

One-sided gap D m 3	 10�3
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This selection of material properties gives rise to considerable numerical chattering at the
structural interface, which propagates to uncertainty in Jacobian evaluation and poor
convergence in the fixed point iteration. The solution is twofold (i), reduce the time step and
(ii) choose another Poincar!e section.

As pointed out by Johansson [16], reducing the time step reveals the finer structure of the
contact force variation while the global motion changes only slightly. Consequently, the time step
is set short enough to accurately predict motion away from the structural interface and define the
Poincar!e section, S; in this region of phase space. This is indicated in Fig. 10a, which shows a
stable one periodic attractor for the first sub-harmonic.

Fig. 10b shows a stable period two attractor, which is born in a flip bifurcation at a0E0:47;
from a period one second sub-harmonic solution. This is shown in the bifurcation diagram
(Fig. 11). This complies with the experimental findings by Moon and Shaw [12]. However, no
period doubling cascade was found in the numerical simulations. Instead, one finds reformation
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Fig. 10. Phase portraits for the Moon and Shaw experiment for O ¼ 10:5 Hz: S denotes the chosen Poincar!e section.

Displayed data are from the structural properties according to Table 4. (a) For forcing amplitude, A0 ¼ 0:7	 10�3 (m),

first sub-harmonic, stable periodic attractor. (b) A0 ¼ 1:5	 10�3 [m], period doubled attractor.

0.46 0.48 0.5 0.52 0.54

Amplitude, a  [-]

-1.05

-1

-0.95

-0.9

v 
[-

]

  Fl

  Fl

0 

Fig. 11. Fixed point solutions for the Moon and Shaw experiment [12] ðO ¼ 10:5 HzÞ: Solid and broken lines denote

stable and unstable solutions, respectively.

J. Knudsen, A.R. Massih / Journal of Sound and Vibration 263 (2003) 175–204 193



of a stable period one second sub-harmonic attractor through flip bifurcation as the amplitude is
increased. Consequently, no chaotic solutions were found in the simulations.

5.2.3. Fuel rod oscillator
This section comprises the results of computations made for the beam oscillator (Fig. 3)

representing a portion of a vibrating fuel rod. In Ref. [10], stable periodic cycles were identified for
oA½5; 6:5� and oA½9; 10� by performing extensive time integrations. Here, the Poincar!e map
method is used to directly determine the stable periodic solutions. From these fixed points, one
can then follow the solution branches by sequential continuation, according to the methods
described in Sections 3 and 4.3, to produce a bifurcation diagram in the form of frequency–
response curves as presented for the SDHO in Section 5.1. Furthermore, phase portraits are
presented to highlight some features of the dynamics. Note that the dynamics of the beam
oscillator is represented by the motion at the contact node throughout this section.

The structural properties specific to the fuel rod oscillator are given in Table 5, [10]. Other
properties are set according to data in Table 1.

Figs. 12a and b show phase portraits at the contact node for o ¼ 5:1 and 9.6, respectively, and
display two stable symmetric solutions, i.e., ð%tþ pn=o;� %xr;�%vÞjx¼�1 ¼ ð%t; %xr; %vÞjx¼þ1: The phase
portraits were generated by initiating the time integration from the fixed point and continuing it
over 100 forcing cycles, of which approximately the last 10 cycles are shown in the figures.
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Fig. 12. Phase portraits for the first sub-harmonic of the stable period one solutions for the beam oscillator. The

displayed data are taken from the node at the contact sites: (a) example 3: o ¼ 5:1 and (b) example 8: o ¼ 9:6:

Table 5

Properties specific for the beam oscillator with fuel rod dimensions

Beam density r kg=m3 9347.51

Cross-section area A m2 7:088	 10�5

Beam length L m 0.64

Mass-proportional damping cm s�1 0.3984

Stiffness-proportional damping ck s 2:975	 10�5

Flexural rigidity D Nm2 24.90

Lateral support spring stiffness ktra N=m 1:48	 105

Torsion support spring stiffness krot N=m 5:35	 102

Contact spring stiffness kc N=m 123750

J. Knudsen, A.R. Massih / Journal of Sound and Vibration 263 (2003) 175–204194



By computing the continuation from the periodic fixed points, displayed in Fig. 12, one finds
stable and unstable branches of period one solutions. These are displayed in Fig. 13. As expected,
the branches follow more complex paths compared to the SDHO (Section 5.1). However, similar
features are not hard to find.

Below o ¼ 5; almost no stable period one solutions are found. This behaviour is in line with
previously published results [10]. However, two short intervals with stable solutions are identified,
oA½3:575; 3:582� and oA½3:643; 3:664�: Figs. 14a and b show examples of phase portraits taken
from respective regions (Example 1: o ¼ 3:58 and Example 2: o ¼ 3:65). These orbits are clearly
asymmetric; however, they have antisymmetric counterparts for the first sub-harmonic of the
second iterated map.

Above o ¼ 5 stable solutions become more frequent. First, one finds a region of stable
symmetric orbits in the interval oA½5:02; 5:28� (e.g., Example 3: o ¼ 5:1 in Fig. 12a).

Similar to the SDHO system in Section 5.1, one can identify a supercritical symmetry
breaking bifurcation. Here, there is a bifurcation in the vicinity of o ¼ 5:629; which is
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Fig. 13. Stable (solid lines) and unstable (broken lines) period one solutions for the first sub-harmonic of the fuel rod

oscillator. The displayed data are taken from the node at the contact sites.
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Fig. 14. Phase portraits for the stable periodic solutions for the first sub-harmonic at low forcing frequencies applied to

the fuel rod oscillator: (a) example 1: o ¼ 3:58 and (b) example 2: o ¼ 3:65:
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somewhat higher than that for the SDHO. Phase-plane orbits are shown just before
(Example 4: o ¼ 5:70 in Fig. 15a) and just after (Examples 5 and 6: o ¼ 5:61 in Figs. 15b and
c, respectively) the bifurcation point. The stable branches of antisymmetric solutions created
are quickly destroyed in what appears to be secondary Hopf or Neimark bifurcations, i.e., when
two complex conjugate Floquet multipliers leave the unit circle away from the real axis.
Beyond o ¼ 6:506 it was impossible to follow the stable branch of symmetric solutions, that
is the solution switches from being a period one point to a period two point on the Poincar!e
map without bifurcating. This discontinuity in the Poincar!e map is associated with %v ¼ 0 at
xc ¼ þ1:

At o ¼ 7:343 a branch of symmetric period one solutions appears. The first region of stable
solutions is found in the interval oA½8:04; 8:90�: The interval is started and ended by Neimark
bifurcations. The phase portrait in Fig. 16a shows an orbit for o ¼ 8:50 (Example 7). The second
and third stable regions along the symmetric branch are found in intervals oA½9:33; 9:93� and
½10:28; 11:35�; respectively. Phase portraits from these regions are shown in Figs. 12b (Example 8:
o ¼ 9:60) and 16b (Example 9: o ¼ 11:0), respectively.

The last two branches of stable period one orbits, identified in the fixed point search (Fig. 13),
are found to lie in the frequency intervals oA½9:75; 10:18� and oA½9:71; 10:17�: They consist of
corresponding antisymmetric orbits. This is exemplified in Figs. 17a and b (Examples 10 and 11:
o ¼ 9:9).

Data for the examples, discussed above and shown in Figs. 12 and 14–17, are listed in
Table 6.
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Fig. 15. Phase portraits of the stable period one solutions close to the supercritical symmetry breaking bifurcation for

the first sub-harmonic of the fuel rod oscillator. The displayed data are taken from the node at the contact sites: (a)

example 4: o ¼ 5:70; (b) example 5: o ¼ 5:61 and (c) example 6: o ¼ 5:61:
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5.2.4. Impact work-rate of the fuel rod oscillator
Here the results from the work-rate calculations for the fuel rod oscillator considered in Section

5.2.3 are presented. The impact work-rate was calculated according to the method described in
Section 4.1 along the stable branches shown in Fig. 13.

Figs. 18a and b show the impact work-rate evaluated at fixed points along the stable branches
for oo7:0 and o > 7:0; respectively. Similar to the SDHO in Section 5.1, one notes the overall
dependence of work-rate on the impact velocity, i.e., higher impact velocity gives higher work-
rate. However, this is not always the case, e.g., compare Fig. 13 with Figs. 18a and b. After the
symmetry breaking bifurcation at oE6:629; two branches of antisymmetric stable solutions are
created when the forcing frequency o is lowered below the bifurcation point, one with increasing
impact velocity and one with decreasing impact velocity, respectively (Fig. 13). However, in
Fig. 18a it can be seen that the two coincident stable branches, created through the bifurcation,
are characterized by a sharp increase in work rate. This behaviour is a result of the double-impact
motion of the system. Fig. 15b shows the phase portrait of a stable antisymmetric solution after
the bifurcation. Note the high impact velocity at x ¼ þ1 and the much lower impact velocity at
x ¼ �1: For the corresponding antisymmetric solution shown in Fig. 15c the situation is vice
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Fig. 16. Phase portraits for the stable period one solutions along symmetric branch for the first sub-harmonic of the

fuel rod oscillator. The displayed data are taken from the node at the contact sites: (a) example 7: o ¼ 8:50 and (b)

example 9: o ¼ 11:0:
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Fig. 17. Phase portraits for the stable asymmetric period one solutions for the first sub-harmonic of the fuel rod

oscillator. The displayed data are taken from the node at the contact sites: (a) example 10: o ¼ 9:90 and (b) example 11:

o ¼ 9:90:
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versa. However, since the work-rate is evaluated over the entire orbit, the two solutions have the
same work-rate. This also applies for the two stable branches of antisymmetric solutions found in
the forcing frequency interval oA½9:75; 10:17�; compare Fig. 13 with Fig. 18b (cf., also Figs. 17a
and b).

Another general observation is that stable asymmetric orbits render higher average work-rate
than the symmetric orbits at or close to the same forcing frequency. This can be seen both in
Fig. 18a, where a sharp increase in work-rate is visible as the forcing frequency is lowered below
the symmetry breaking bifurcation at oE5:629 (cf., also Examples 4–6 in Table 6) and in
Fig. 18b, where the line corresponding to the work-rate at the two stable branches of mutually
antisymmetric orbits lie well above the lines showing the work-rate at stable symmetric orbits (cf.,
Examples 8, 10 and 11 in Table 6).

Table 6

Examples for the fuel rod oscillator

Example 1 2 3 4

o 3.580 3.650 5.100 5.700
%t �0.16669 �0.18328 �0.20243 �0.20292

%vc 10.329 13.148 8.4025 14.309

Total average work-rate 0.97779 0.83658 0.73765 0.78435

Righta average work-rate 0.48521 0.41801 0.36882 0.39218

Leftb average work-rate 0.49258 0.41857 0.36883 0.39218

Max displacement amplitude 1.9228 1.8483 1.6608 1.6334

Max velocity amplitude 15.034 15.321 12.277 16.599

Example 5 6 7 8

o 5.610 5.610 8.500 9.600
%t �0.21847 �0.16549 �0.12967 �0.12668

%vc 18.629 9.5478 20.817 35.526

Total average work-rate 1.9514 1.9514 6.0622 14.645

Righta average work-rate 0.94702 1.0044 3.0311 7.3226

Leftb average work-rate 1.0043 0.94705 3.0311 7.3229

Max displacement amplitude 2.0472 2.0468 2.4969 3.1893

Max velocity amplitude 20.556 20.553 21.082 35.527

Example 9 10 11

o 11.00 9.900 9.900
%t �0.096098 �0.10420 �0.63197

%vc 103.34 61.365 50.941

Total average work-rate 168.07 37.074 37.074

Righta average work-rate 84.034 18.092 18.982

Leftb average work-rate 84.034 18.982 18.092

Max displacement amplitude 7.9277 4.4709 4.4710

Max velocity amplitude 110.01 62.170 62.172

The listed data are taken from the node at the contact sites.
aRight contact spring at x ¼ þ1:
bLeft contact spring at x ¼ �1:
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In the interval oA½5:018; 5:284�; one also observes an increasing work-rate for decreasing o:
This seems to be connected to the development of loops in the phase-plane, which is shown in the
portraits in Fig. 19. The loop formation is accompanied by an increasing peak contact force.

Comparing the results of the SDHO and the fuel rod oscillator, one can see that the difference
in the work-rate between the left and right contact sites for an asymmetric orbit is far less for the
fuel rod oscillator than for the SDHO. Despite this the SDHO used here is regarded as a one-
dimensional representation of the fuel rod oscillator. Thus, indicating that one can study some
aspects of the fuel rod vibro-impact dynamics using an SDHO simplification.
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Fig. 18. Impact work-rate for the fuel rod oscillator evaluated along the stable branches shown in Fig. 13 for (a) oo7:0
and (b) o > 7:0; respectively.
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Fig. 19. Phase portraits for the fuel rod oscillator at (a) o ¼ 5:05; (b) o ¼ 5:10; (c) o ¼ 5:15 and (d) o ¼ 20;
respectively.
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6. Conclusion

The dynamics of interaction of four different impact oscillators subject to harmonic excitation
has been analyzed. More specifically, the existence and stability of periodic orbits and the local
bifurcation thereof are numerically evaluated. Impact work-rate, which is the rate of energy
dissipated to the impacting surfaces, is evaluated. This property is a measure of the available
energy for surface damage and is calculated along stable branches of period one orbits.

Firstly, the dynamics of an impact oscillator in its simplest form, i.e., a mass, spring, damper
system with two-sided elastic amplitude constraints (SDHO) was studied. The system was
assigned properties relevant to a vibrating nuclear fuel rod. The resulting dynamics is well in line
with what has been found for an oscillator with rigid amplitude constraints [6]. However, in the
analysis, asymmetric orbits have also been included. It has been shown that asymmetric orbits
render asymmetric work-rates on the symmetrically placed constraints. Furthermore, these orbits
have higher work-rates than symmetric orbits at or near the same forcing frequency. From Ref.
[10] one learns that aperiodic or chaotic solutions do exist for lower forcing frequencies. The
current analysis shows that the route to chaos is initiated with a supercritical symmetry breaking
bifurcation followed by a sequence of flip bifurcations. This is also in agreement with results for
oscillators with rigid constraints (cf., Ref. [24]).

Secondly, to validate the numerical methods, the simplest two-sided impact oscillator was re-
modelled using a cylindrical beam with unit length and radius. To enable direct comparison with
the SDHO, the beam is given an artificial flexural rigidity and all the rotational degrees of freedom
are locked down. The numerical method used to find periodic orbits of the vibrating beam
converged to practically the same values as found for the SDHO. Furthermore, phase portraits
for the two systems were virtually identical and work-rates were found to have negligible
deviation.

Thirdly, attention was turned towards an experiment conducted by Moon and Shaw [12]. To
analyze the experiment, some assumptions regarding the structural properties of the cantilevered
beam were made. The flexural rigidity of the beam was set by matching the first three natural
eigenfrequencies to measurements. The associated Young’s modulus, E; was checked against
tabulated data for steel and found to be reasonable. In the experiment, constrained layer damping
was added by taping a shim steel on both sides of the beam. In the evaluation, the Rayleigh
damping coefficients were set to give correct damping at the first eigenfrequency. Computations
for a forcing frequency of 10:5 Hz could reproduce the bifurcation from a stable period one sub-
harmonic two-orbit solution to a period two sub-harmonic four-orbit solution. Other forcing
frequencies were explored and longer period-doubling cascades were identified. However, a
chaotic attractor could not be found. Two sources of the discrepancy between reality and
simulation can immediately be identified: (i) load application and (ii) Rayleigh damping. For the
applied load, a distributed load was used rather than a displacement load as employed in the
experiment. With regard to damping, the stiffness-proportional part of the Rayleigh damping will
supply higher damping at higher frequencies. This feature, although attractive numerically, is not
necessarily a correct one. To further evaluate the results of the Moon and Shaw experiment these
issues need to be resolved.

Finally, the methodology has been applied to a two-dimensional representation of a vibrating
fuel rod. For lower frequencies the beam shows similar dynamic response compared to the
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SDHO, i.e., similar phenomena are found in both cases. However, the similarities must not be
exaggerated. Impact velocities and work-rates are of the same magnitude as the corresponding
values for the SDHO, whereas phase portraits of orbits are more ‘‘wrinkled’’ and the patterns of
stable and unstable branches are more complex in the fuel rod oscillator. The results for the
SDHO showed significant differences in work-rate between the symmetric constraints, i.e.,
between the right and the left contact sites. For the fuel rod oscillator, this difference is there, but
it is not as pronounced. Moreover, work-rate for asymmetric orbits is significantly higher than for
symmetric orbits at or near the same frequency, as predicted using the SDHO.

Wear is a slow process in any well-designed engineering system. Further, harmonic excitation is
a feature of many of these systems (e.g., turbines). Hence, the study of periodic orbits in a
harmonically vibrating system with wear is relevant. Note that systems with combined loading
(harmonic and stochastic) can also behave as periodic attractors, see e.g., Ref. [25]. The method
described in this paper can be used to assess the wear susceptibility of beam-like structures that
are subject to impact vibrations.
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Appendix A. Solution to the simple damped harmonic oscillator

For the sake of completeness, the analytic solution of the simple damped harmonic oscillator
with symmetric elastic constraints presented in Section 2, Eq. (1) is included. This solution
originates from Ref. [5], which has been adapted to include double-impact motion [10] and here
time reversal property. It is written as

xðtÞ ¼ xtrðtÞ þ xstðtÞ þ sgnðtÞ sgnðviÞð1=w2
i � 1Þ; i ¼ f0; 1;y;Ng ðA:1Þ

with

xtrðtÞ ¼ e�zðt�tiÞfAi cos½Oiðt� tiÞ� þ Bi sin½Oiðt� tiÞ�g;

xstðtÞ ¼ gi cosðotÞ þ di sinðotÞ;

Ai ¼ � gici � disi þ ð�1Þi sgnðtÞ sgnðviÞ=w2
i ;

Bi ¼ ½vi þ ð�1Þi sgnðtÞ sgnðviÞz=w2
i þ siðgio� dizÞ � ciðgizþ dioÞ�=Oi;

gi ¼ðw2
i � o2Þb=Di;

di ¼ 2zob=Di;

Di ¼ðw2
i � o2Þ2 þ ð2zoÞ2;
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O2
i ¼w2

i � z2;

ci ¼ cosðotÞ;

si ¼ sinðotÞ; ðA:2Þ

where even and odd i yield motion during contact and free flight, respectively, and sgnðtÞ defines
the direction of the time flow.

Appendix B. Evaluation of Jacobian

The Jacobian for the SDHO system with symmetric elastic constraints is

@ðtiþ1; viþ1Þ
@ðti; viÞ

� �
¼

@tiþ1

@ti

@tiþ1

@vi

@viþ1

@ti

@viþ1

@vi

2
664

3
775; ðB:1Þ

where

@tiþ1

@ti

¼
e�zðtiþ1�tiÞ

viþ1
vi cos½Oiðtiþ1 � tiÞ�

�

�
1

Oi

½zvi þ ð�1Þi sgnðviÞ � b cosðotiÞ� sin½Oiðtiþ1 � tiÞ�
�
; ðB:2Þ

@tiþ1

@vi

¼
�e�zðtiþ1�tiÞ sin½Oiðtiþ1 � tiÞ�

viþ1Oi

; ðB:3Þ

@viþ1

@ti

¼
@tiþ1

@ti

aiþ1 þ e�zðtiþ1�tiÞ ½2zvi þ ð�1Þi sgnðviÞ � b cosðotiÞ�cos½Oiðtiþ1 � tiÞ�
�

þ vi

O2
i � z2

Oi

þ
z
Oi

f�ð�1Þi sgnðviÞ þ b cosðotiÞg
� �

sin½Oiðtiþ1 � tiÞ�
�
; ðB:4Þ

@viþ1

@vi

¼
@tiþ1

@vi

aiþ1 þ e�zðtiþ1�tiÞ cos½Oiðtiþ1 � tiÞ� �
z
Oi

sin½Oiðtiþ1 � tiÞ�
� �

: ðB:5Þ

Appendix C. Bifurcations of periodic orbits

Periodic motion of a constrained oscillating system can be studied by a Poincar!e map P; see for
example Ref. [26]. Each iteration of P corresponds to a contact of mass m with the constraints at
x ¼ 71 and relates the time and velocity at the previous encounter to those of the subsequent one.
A motion that repeats after k contacts must satisfy the following condition:

%tþ
2pn

o
; %v

� �
¼ Pkð%t; %vÞ; ðC:1Þ
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where Pk denotes that P has been applied k times. According to condition (C.1), the motion
repeats itself after k encounters with the Poincar!e section at x ¼ 71 after n cycles. Such a motion
is referred to as a sub-harmonic of order n: The point ð%t; %vÞ is called a periodic point of P:

The stability of periodic motion can be investigated by examining whether the motion near the
periodic motion is attracted towards or repelled from the periodic solution. A small disturbance in
proximity of ð%t; %vÞ allows us to express condition (C.1), after expansion in Taylor series and
linearizing, in the manner

ðzjþ1; Zjþ1Þ ¼ %DPkðzj; ZjÞ; ðC:2Þ

where ðz; ZÞ is the disturbance around ð%t; %vÞ and %DPk is the first derivative (Jacobian matrix of 2k-
dimension) of Pk evaluated at the periodic point. Note that the stability analysis is local since the
disturbance is localized.

The stability criterion is established in terms of the eigenvalues lj of the Jacobian matrix %DPk:
For the linear system (C.2), the periodic orbit is asymptotically stable if and only if the spectrum
of %DPk lies within a unit circle in the complex l plane, i.e., jlj jo1: When lj leaves the unit circle,
three situations can be envisaged. (i) An eigenvalue leaves the unit circle through li=+1,
resulting in the following three bifurcations: transcritical, symmetry-breaking, and cyclic-fold
bifurcations. (ii) An eigenvalue leaves the unit circle through li ¼ �1; resulting a period-doubling
bifurcation. (iii) Two complex conjugate eigenvalues leave the unit circle away from the real axis,
resulting a Hopf bifurcation.
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